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A tale of two Ws 
• Process : p p → W W → ℓ ν ℓ ν 
• Mild excesses reported by ATLAS and CMS 

at  7 and 8 TeV measurements. [before 2014]   

NLO
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at  7 and 8 TeV measurements.   

NLO

• Discrepancy reduces slightly at NNLO but does not go 
away.   

• Perhaps not so surprising since MCFM includes               
gg → W W contribution (formally NNLO)
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√
s

TeV σLO σNLO σNNLO σgg→H→WW∗

7 29.52+1.6%
−2.5% 45.16+3.7%

−2.9% 49.04+2.1%
−1.8% 3.25+7.1%

−7.8%

8 35.50+2.4%
−3.5% 54.77+3.7%

−2.9% 59.84+2.2%
−1.9% 4.14+7.2%

−7.8%

13 67.16+5.5%
−6.7% 106.0+4.1%

−3.2% 118.7+2.5%
−2.2% 9.44+7.4%

−7.9%

14 73.74+5.9%
−7.2% 116.7+4.1%

−3.3% 131.3+2.6%
−2.2% 10.64+7.5%

−8.0%

TABLE I. LO, NLO and NNLO cross sections (in picobarn)
for on-shell W+W− production in the 4FNS and reference
results for gg → H → WW ∗ from Ref. [75].

decrease when moving from LO to NLO and NNLO.
Moreover, the NNLO (NLO) corrections turn out to ex-
ceed the scale uncertainty of the NLO (LO) predictions
by up to a factor 3 (34). The fact that LO and NLO
scale variations underestimate higher-order effects can be
attributed to the fact that the gluon–quark and gluon–
gluon induced partonic channels, which yield a sizable
contribution to the W+W− cross section, appear only
beyond LO and NLO, respectively. The NNLO is the
first order at which all partonic channels are contribut-
ing. The NNLO scale dependence, which amounts to
about 3%, can thus be considered a realistic estimate of
the theoretical uncertainty due to missing higher-order
effects.

In Figure 1, theoretical predictions in the 4FNS are
compared to CMS and ATLAS measurements at 7 and
8 TeV [5–8]. For a consistent comparison, our results
for on-shell W+W− production are combined with the
gg → H → WW ∗ cross sections reported in Table I.
It turns out that the inclusion of the NNLO corrections
leads to an excellent description of the data at 7 TeV and
decreases the significance of the observed excess at 8 TeV.
In the lower frame of Figure 1, predictions and scale vari-
ations at NNLO are compared to NLO ones, and also the
individual contribution of the gg → W+W− channel is
shown. Using NNLO parton distributions throughout,
the loop induced gluon fusion contribution is only about
35% of the total NNLO correction.

In the light of the small scale dependence of the 4FNS
NNLO cross section, the ambiguities associated with the
definition of a top-free W+W− cross section and its sen-
sitivity to the choice of the FNS might represent a sig-
nificant source of theoretical uncertainty at NNLO. In
particular, the omission of b-quark emissions in our 4FNS
definition of the W+W− cross section implies potentially
large logarithms of mb in the transition from the 4FNS
to the 5FNS. To quantify this kind of uncertainties, we
study the NNLO W+W− cross section in the 5FNS and
introduce a subtraction of its top contamination that al-
lows for a consistent comparison between the two FNSs.
An optimal definition of W+W− production in the 5FNS
requires maximal suppression of the top resonances in
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FIG. 1. The on-shell W+W− cross section in the 4FNS at

LO (dots), NLO (dashes), NLO+gg (dot dashes) and NNLO

(solid) combined with gg → H → WW ∗ is compared to re-

cent ATLAS and CMS measurements [5–8]. In the lower panel

NNLO and NLO+gg results are normalized to NLO predic-

tions. The bands describe scale variations.

the pp → W+W−b and pp → W+W−bb̄ channels. At
the same time, the cancellation of collinear singularities
associated with massless g → bb̄ splittings requires a suf-
ficient level of inclusiveness. The difficulty of fulfilling
both requirements is clearly illustrated in Figure 2 (left),
where 5FNS predictions are plotted versus a b-jet veto
that rejects b-jets with pT,bjet > pvetoT,bjet over the whole
rapidity range, and are compared to 4FNS results. In
the inclusive limit, pvetoT,bjet → ∞, the higher-order correc-
tions in the 5FNS suffer from a huge top contamination.
At 7 (14) TeV the resulting relative enhancement with
respect to the 4FNS amounts to about 30 (60)% at NLO
and a factor 4 (8) at NNLO. In principle, it can be sup-
pressed through the b-jet veto. However, for natural jet
veto values around 30 GeV the top contamination re-
mains larger than 10% of the W+W− cross section, and
a complete suppression of the top contributions requires
a veto of the order of 1 GeV. Moreover, as pvetoT,bjet → 0,
the (N)NLO cross section does not approach a constant,
but, starting from pvetoT,bjet ∼ 10 GeV, it displays a loga-
rithmic slope due to singularities associated with initial
state g → bb̄ splittings. This sensitivity to the jet-veto
parameters represents a theoretical ambiguity at the sev-
eral percent level, which is inherent in the definition of
top-free W+W− production based on a b-jet veto.

To circumvent this problem we will adopt an alterna-

NNLO : 1408.5243 
Gehrmann et al.
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SM

Susy

• New physics hiding in plain sight? (ℓ ℓ + MET final state) 
• Could it be SUSY?  
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110 GeV charginos!
D. Curtin, PJ, and P. Meade, 

Charginos hiding in plain sight 
[arXiv:1206.6888] 

• Any new physics charged under electroweak gauge group could 
possibly lead to such signatures. Other proposed explanations for the 
WW excess include sleptons and stops.
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• Could the WW excess have a more subtle explanation?   
• Cross-section reported : p p → W W + X  

X are all hadronic final states i.e. inclusive measurement 

• Actual measurement : p p → W W + X’ 
X’ are some hadronic final states that pass jet-veto condition. 

Jet-veto : No jets in an event 

ATLAS : 
pT >  25 GeV 

anti-kT jets with R=0.4

CMS : 
pT > 30 GeV 

anti-kT jets with R=0.5

A tale of two Ws 
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• Cross-section reported : p p → W W + X  

X are all hadronic final states i.e. inclusive measurement 

• Actual measurement : p p → W W + X’ 
X’ are some hadronic final states that pass jet-veto condition. 

Measured Jet-veto 
Cross-section 

Reported Inclusive 
Cross-section 

Do we have a good theoretical understanding of MC? 

Monte-Carlo
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Figure 1: (a) Comparison of data and MC as a function of jet multiplicity by the ATLAS experiment

at
p
s = 8TeV run [3], for events passing the selection criteria (except jet-veto) as required by the

W+W� cross-section measurement.

(b) NLO cross-sections for qq̄ ! W+W� at
p
s = 8 TeV LHC run, as a function of pvetoT obtained

using MCFM. The blue (or green) hatched region corresponds to scale variation by a factor of 1/2

and 2 around the central value of µr = µf = m
W

(or pvetoT ).

(c) Same as (b) but the scale variation in the red hatched region is calculated using the procedure

described in [32].

the two choices of scales not only have large uncertainties but also yield results incompatible with

each other. One might be tempted to say the error bands are much smaller and the results for

the two scale choices seem to converge in the range pvetoT ⇠ 20 – 30 GeV that is actually used by

the aforementioned ATLAS and CMS studies. However, as we have already warned above, this

seemingly small uncertainty is just an artifact of cancellations between the virtual corrections and

real emissions.

Large cancellations of this kind are well known in the literature, and we briefly summarize the

arguments presented in [32]. Defining ��N

to be the cross-section with the number of jets � N ,

one may parametrize the total inclusive cross-section ��0 and the 1-jet inclusive cross-sections

��1(pvetoT ) with at least one jet with pT > pvetoT as

��0 = �B

✓
1 +

1X
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s

◆
,

��1(p
veto
T ) = �B

1X

n=1

2nX
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d
n,m

↵n

s L
m ,

(1.1)

where �B is the tree-level cross-section and L ⌘ log
⇥
M2/(pvetoT )2

⇤ � 1. The 0-jet inclusive cross-

section ��0 does not have any large logarithms, as there is only one mass scale M in the problem

so we can simply set µ ⇠ M . Since the inclusive NLO K-factor to WW production is ⇠ 1.6,

the coe�cient c1 is large. On the other hand, the 1-jet inclusive cross-section ��1 is given at

NLO by ��1 ' �B ↵s (d1,2L2 + d1,1L + d1,0), which can again be large due to the presence of
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Measured Jet-veto 
Cross-section 

Reported Inclusive 
Cross-section 

Do we have a good theoretical understanding of MC? 

WW signal
Top background

Disagreement in 
 the 0-jet bin

Monte-Carlo
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• Discrepancy between pT distribution shapes from NNLL 
resummation and MC [arXiv:1407.4481, P. Meade et al.]   

• New CMS 8 TeV analysis [CMS-PAS-SMP-14-016] reweights MC to 
correct for the pT distribution. 

Measured Jet-veto 
Cross-section 

Reported Inclusive 
Cross-section 

Monte-Carlo

Do we have a good theoretical understanding of MC? 
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Table 2: Signal efficiency for the four event categories used in the pp ! W+W� cross section
measurement. The values reported are a product of the detector geometrical acceptance and
the object reconstruction and event identification efficiency. The statistical uncertainty is from
the limited size of the MC samples.

Event category Signal efficiency (%)

0-jet category Different-flavor 3.02 ± 0.02 (stat.) ± 0.22 (syst.)
Same-flavor 1.21 ± 0.01 (stat.) ± 0.09 (syst.)

1-jet category Different-flavor 0.96 ± 0.01 (stat.) ± 0.11 (syst.)
Same-flavor 0.34 ± 0.01 (stat.) ± 0.04 (syst.)

The cross section is measured separately in events with same- and different-flavor leptons, and
in events with exclusively zero or one reconstructed and identified jets. The four event cate-
gories are combined by performing a profile likelihood fit to the data following the statistical
methodology described in [43, 44]. Systematic uncertainties are incorporated in the analysis
via nuisance parameters that are treated according to the frequentist paradigm. Table 3 lists the
observed number of events and expected signal and background yields in each category.

Table 3: Data, signal and background yields for the four different event categories used for
the pp ! W+W� cross section measurement. The reported uncertainties include both the
statistical and systematic components.

Process 0-jet category 1-jet category
Different-flavor Same-flavor Different-flavor Same-flavor

qq ! W+W� 3516 ± 271 1390 ± 109 1113 ± 137 386 ± 49
gg ! W+W� 162 ± 50 91 ± 28 62 ± 19 27 ± 9
W+W� 3678 ± 276 1481 ± 113 1174 ± 139 413 ± 50
ZZ + WZ 84 ± 10 89 ± 11 86 ± 4 42 ± 2
VVV 33 ± 17 17 ± 9 28 ± 14 14 ± 7
Top-quark 522 ± 83 248 ± 26 1398 ± 156 562 ± 128
Z/g⇤! `+`� 38 ± 4 141 ± 63 136 ± 14 65 ± 33
Wg⇤ 54 ± 22 12 ± 5 18 ± 8 3 ± 2
Wg 54 ± 20 20 ± 8 36 ± 14 9 ± 6
W + jets(e) 189 ± 68 46 ± 17 114 ± 41 16 ± 6
W + jets(µ) 81 ± 40 19 ± 9 63 ± 30 17 ± 8
Higgs 125 ± 25 53 ± 11 75 ± 22 22 ± 7
Total bkg. 1179 ± 123 643 ± 73 1954 ± 168 749 ± 133
W+W� + Total bkg. 4857 ± 302 2124 ± 134 3128 ± 217 1162 ± 142
Data 4847 2233 3114 1198

The distributions of the leading lepton pT, p`T, max; the pT of the dilepton system, p``T ; the dilep-
ton invariant mass, m``; and the azimuthal angle between the two leptons, Df``, are shown in
Figs. 1 and 2 for the 0-jet and 1-jet categories.

The data sample corresponds to an integrated luminosity of L = 19.4 ± 0.5 fb�1. The W+W�
production cross section in pp collision data at

p
s = 8 TeV is measured in the individual

channels as shown in Table 4.

The experimental and theoretical uncertainties on the event selection as well as the uncertainty
on the integrated luminosity are reported separately. The combined result is measured to be:

sW+W� = 60.1 ± 0.9 (stat.) ± 3.2 (exp.) ± 3.1 (th.) ± 1.6 (lum.) pb. (2)

The result is within one standard deviation of the NNLO theoretical prediction of 59.8+1.3
�1.1 pb [4].
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pT resummation  
Reweight

• Some correlations between jet-veto and pT of the WW system 
captured by pT reweighting technique. 
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Our results
Comparison with Experimental Data

Thank you!
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Table 2: Comparison of our theory predictions for jet-veto cross-section with those measured by the
ATLAS and CMS experiments at

p
s = 7- and 8-TeV LHC runs. The Higgs jet-veto cross-sections

are taken from [43].

the packages. Reproducing those tunes, however, is beyond the scope of this work. It would
be beneficial to both theoretical and experimental communities if the jet-veto cross-sections
were directly presented by the collaborations.

• Although the leptons from the Higgs decay h ! WW ⇤ ! 2`2⌫ are expected to be softer
compared to those from on-shell W -pair production, there would be some contamination from
this channel. It is conceivable that Higgs decays could lead to a further increase by ⇠ 1 – 2
pb in the theory prediction.

• The gg !WW process without involving the higgs, which are considered at the LO without
resummation in our work, is estimated to be ⇠ 3% at

p
s ⇠ 8 TeV. The NLO contributions

to this channel can further influence the theory prediction and needs to be studied.

• Finally and possibly most importantly, we would like to point out that some of the background
processes to W pair production may also have been incorrectly estimated from the MC+PS
simulations in the 0-jet bin. This applies to many di-boson backgrounds that are purely
estimated from fixed-order MC, but also some of the data-driven methods such as tt̄ and tW ,
which too rely on MC partially. This may be particularly important for the slight discrepancy
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A tale of two Ws 



Outline

1. Large logs and their resummation 

2. Rapidity Renormalization Group 

3. Applications to WW + 0 jets



Part 1 
Large logs and their resummation



• Higher order calculations in perturbation theory 
often involve logarithmic terms which under certain 
situations can be large. 

• Such large logs can spoil perturbative convergence 
and need to be resummed to all orders.    

• Origin of such large logs is usually the presence of 
multiple scales in the problem.  

Origin of large logs



p p → W W

Inclusive Jet-veto

Logs at  
higher orders

Choice of μ to 
minimize logs μ ~ MWW

No choice of μ 
Large logs of the form  

            remain 

Scales in  
the problem MWW pTveto, MWW

Origin of large logs
Example : 



Origin of large logs
• Structure of IR logs in perturbation theory is  

where

• At each order in perturbation theory, leading log term 
enters as powers of   

• Consider WW production at LHC, for MWW ~ 250 GeV 
and pTveto ~ 25 GeV,            

!

• Also, π2 terms can be sizable. 



• We will use EFT to resum large logs, specifically 
Soft-Collinear Effective Theory (SCET).

with
aµk ⌘ a+nµ

+ + a�nµ

� . (2.6)

From (2.3), we see that the metric and inverse metric5 in the x+-x� subspace are given by

(g
µ⌫

) =

 
0 2

2 0

!
, (gµ⌫) =

 
0 1/2

1/2 0

!
, (2.7)

so, for arbitrary 4-vectors aµ and bµ, we have

a·b ⌘ a+b
+ + a�b� + a? ·b? = 2(a�b+ + a+b�) + a? ·b?

=
1

2
(a+b� + a�b+) + a? ·b? .

(2.8)

Now, by definition and without loss of generality, we let the 4-momentum of the initial quark

q1 be dominantly in the p+ component.6 So, we parametrically have p+ ⇠ O(M), where M is the

invariant mass of the W+W� pair. The p? component, on the other hand, is parametrically never

larger than O(pvetoT ), because the jet veto condition prevents the ? component of momentum of a

gluon radiated o↵ of q1 from being larger than pvetoT . We express this parametrics as |p?| ⇠ O(�M),

where � ⌘ pvetoT /M . The parametric size of the p� component then follows from requiring that

the quark can be on-shell, that is, p2 = p+p� + p? ·p? can be zero. (If it cannot, this quark

mode should not be in the e↵ective theory.) This determines that p� ⇠ O(�2M). Therefore, the

components of p of the initial quark must have the following parametric scaling behavior in terms

of M and �:

(p+, p�, p?) ⇠ (1,�2,�)M . (2.9)

We refer to this scaling behavior as the collinear scaling. Similarly, the p of the initial quark q2
should scale as

(p+, p�, p?) ⇠ (�2, 1,�)M , (2.10)

which we refer to as the anticollinear scaling. Note that generic collinear and anticollinear modes

have virtuality of order O(�M) ⇠ pvetoT , that is,

p2 ⇠ O(�2M2) , (2.11)

which is the square of the size of the ? component. It will be useful to remember the virtualities

of collinear and anticollinear modes are given by their pT.

Next, let us look at a gluon radiated o↵ of a collinear quark with 4-momentum p, where the

collinear quark splits into a quark with 4-momemtum q and a gluon with k. We would like to find the

condition on k such that q can remain (nearly) on-shell, because otherwise the q mode should not be

in the e↵ective theory. To find that condition, let k scale as (k+, k�, k?) ⇠ (�a,�b,�c)M . In order

for the k mode to be in the theory, we must ensure that k can be on-shell, i.e., k2 = k+k�� |~k?|2 = 0.

This can happen to nonzero k only if a + b = 2c. If c < 1, then k? is parametrically larger than

pvetoT so the gluon would be rejected by jet veto. Hence we do not have to consider gluons with

c < 1. If c > 1, then k? is parametrically smaller than pvetoT so the gluon would pass the jet veto

5 We adopt the +��� sign convention for the spacetime metric.
6 Unless otherwise noted, we always index 4-momenta by a lower index, as they are associated with a spacetime

derivative @, whose index is naturally lowered.
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Degrees of Freedom and power counting: 

Unlike usual EFTs, power counting is not in the mass scale.    
Instead, power counting is in the virtuality.  

• Collinear Modes :  

• Anti-collinear Modes :  

• Soft Modes : 
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and the requirement that physical observables should be free of collinear anomalies leads to RG

equations with respect to ⌫,8 in addition to standard RG equations with respect to µ associated

with DR. We will see how this works explicitly in Section 3.2.1.

Finally, since all rapidity integrals go from �1 to 1 whether we are dealing with collinear or an-

ticollinear modes, how do we actually distinguish the two modes inside loop integrals? Equivalently,

how do we avoid double-counting the modes at the loop level (the so-called zero-bin subtraction

problem [67])? Those two modes can be distinguished because they are assigned di↵erent scaling

laws. Even if we have two integrals, one for collinear and the other for anticollinear, with apparently

the same integrands and the same integration limits, the two integrands should be expanded di↵er-

ently in powers of �. (Note that everything must be expanded in EFTs for consistent and manifest

power counting.) Thus, order-by-order in �, their integrands di↵er, lead to di↵erent divergences,

and yield di↵erent results. The principle of well-defined power counting is precisely what resolves

the ambiguity/double-counting problem. (This point was particularly well elucidated in Ref. [44].)

2.1.4 Nonlocality on the Lightcone

Let �c(x) be a field that interpolates a collinear particle, that is, let �c(x) consist only of Fourier

modes scaling as ⇠ (1,�2,�)M . The components of a spacetime derivative acting on �c then scale

as

@+�c ⇠ M�c , @��c ⇠ �2M�c , @?�c ⇠ �M�c . (2.12)

Since the e↵ective theory is an expansion in terms of two small dimensionless parameters � and

↵s, with only one dimensionful scale M ,9 the scaling behavior @+�c ⇠ M�c implies that a Taylor

expansion of �c in powers of @+/M cannot be truncated at any finite order. Therefore, there are

no small parameters in the collinear sector that imply locality in the x+ coordinate [54–56]. On the

other hand, @?/M and @�/M acting on collinear fields are suppressed by � and �2, respectively, so

the lagrangian can be truncated at some finite orders in @?/M and @�/M , giving rise to locality

in the x? and x� coordinates. (In contrast, in familiar Lorentz-invariant Wilsonian EFTs, the fact

that we have @/⇤ ⌧ 1 in all directions at low energy implies an isotropically local lagrangian.)

Similarly, in the anticollinear sector, the e↵ective lagrangian is nonlocal in the x� coordinate while

local in x+ and x?. Intuitively, these nonlocalities make a perfect sense. Since the p+ component

of a collinear momentum is O(M), we can form a wave packet of length ⇠ M�1 in the x+ direction,

so we can actually resolve the intrinsic nonlocality of the e↵ective theory arising from integrating

out o↵-shell propagators at distances of O(M�1). A nonlocal EFT can be just as useful as local

EFTs as long as it possesses well-defined power-counting rules and symmetries to ensure that there

are only a finite number of operators we can write down at any given order in the power-counting

parameters. This is indeed the case for our SCET lagrangian, as we will see later.

8 By letting all ⌫ dependence be carried by collinear and anticollinear fields without including the so-called soft

gluons (the gluons with momenta scaling as ⇠ (�,�,�)M , i.e., those with a small rapidity), we have implicitly chosen
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Z
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• Integrate out heavy modes 
(~mW) and keep only the light 
modes (~mf) in EFT. 

• Information about heavy modes 
encoded in Wilson coefficients 
by matching to full theory at high 
scale. 

• Wilson coefficient is run down to 
a low mass scale where 
computations are performed. 
The RG running effective resums 
large logs      ~log(mW/mf)

• Integrate out high virtualities (or 
highly off-shell modes ~ MWW) and 
keep only almost on-shell modes 
(~ pTveto) in SCET. 

• Information about highly off-shell 
modes encoded in Wilson 
coefficients by matching to full 
theory (i.e. QCD) at high scale. 

• Wilson coefficient is run down to a 
low virtuality scale where 
computations are performed. The 
RG running effective resums large 
logs  ~log(MWW/pTveto)

EFT (Fermi’s theory)

SCET : Parallels with generic EFTs
SCET (WW jet-veto)
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Gauge symmetry for each sector 

Peculiar features of SCET

• Multiple copies of SU(3), one for each sector.  
• i.e. Collinear modes transform under SU(3)c but 

singlet under SU(3)c ̅
• Anti-Collinear modes transform under SU(3)c ̅but 

singlet under SU(3)c 

• Unlike QCD, following operator not                  
gauge invariant under SU(3)c x SU(3)c ̅

because gauge transformations should map a collinear modes to a collinear mode in order for gauge
invariance to be compatible with power counting. We thus define collinear gauge transformations
to be the SU(3)C gauge transformations that map collinear modes to collinear modes:

�c(x) U

c7�! �0c(x) = Uc(x) �c(x) . (2.13)

This implies that Uc(x) itself should only consist of collinear modes. Hence, Uc(x) must be asso-
ciated with the collinear gluon field Gcµ(x), which itself should be a collinear field and transform
under collinear gauge transformations as

Gcµ
U

c7�! G0
cµ = UcGcµU †

c +
i
gc

(@
µ

Uc)U †
c . (2.14)

We must check that such restricted gauge transformations do not defeat the very purpose of gauge
invariance as a redundancy of the theory to remove the gauge boson’s unphysical polarization whose
polarization 4-vector is parallel to the gauge boson’s 4-momentum. Since Uc(x) contains precisely
the same set of Fourier modes as Gcµ(x), the removal of the unphysical polarization from Gcµ(x)
works only if we require that the polarization components of Gcµ should scale in the same way as
its momentum components [TO: added these refs] [52–54], i.e.,

(Gc+, Gc�, Gc?) ⇠ (1, �2, �)M . (2.15)

Having introduced the associated gauge field and gauge transformation laws, collinear gauge
invariance can be accounted for in the usual manner. We define the collinear covariant derivative
as

Dcµ ⌘ @
µ

+ igcGcµ (2.16)

so that Dcµ�c(x) 7�! D0
cµ�0c(x) = Uc(x) Dcµ�c(x). We also define the collinear field strength tensor

as
Gcµ⌫

⌘ 1
igc

[Dcµ,Dc⌫ ] . (2.17)

Thanks to the nonlocality of SCET discussed in Section 2.1.4, there is a third gauge covariant
object that can be used to construct the e↵ective lagrangian. We define a Wilson line Wc(x, y) as

Wc(x, y) ⌘ P
z

exp

�igc

Z
x

y

dzµ Gcµ(z)
�

, (2.18)

where P
z

denotes a path-ordered product along a path zµ in which the factors associated with
points x and y appear at the left-most and right-most positions, respectively. Being a Wilson line,
it transforms covariantly as

Wc(x, y) 7�! W 0
c (x, y) = Uc(x) Wc(x, y) U †

c (y) (2.19)

under collinear gauge transformations (2.14). As discussed in Section 2.1.4, the collinear sector
is permitted to have nonlocality in the x+ coordinate but not in other directions. So, a collinear
Wilson line must be a straight line in the x+ direction. Such collinear Wilson lines only pick up
the + component of the collinear gauge field Gcµ, because dz ·Gc = dz+ Gc+ along a straight path
in the x+ direction. The Gc+ component is also the largest of Gcµ as one can see from (2.15). A
convenient choice of the initial point y is y ! �1, because there are no collinear gluons in the
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Wilson lines

Peculiar features of SCET

• Wilson lines for each sector. 

initial state of our problem so the boundary condition of our path integral is that Gcµ should vanish
in the infinite past. Therefore, we define a collinear Wilson line [TO: added these refs] [52–54]
as

Wc(x) ⌘ P
s

exp

�igc

Z 0

�1
ds Gc+(z(s))

�
(2.20)

with P
s

denoting path ordering in the increasing order in s from right to left, where the path zµ(s)
starts out from a point in the past infinity at s = �1, moves straight up in the x+ direction as s

increases, and arrives at point x when s = 0:

z+(s) = x++ s , z�(s) = x� , ~z?(s) = ~x? . (2.21)

Because of the boundary condition at the past infinity, this Wilson line transforms as

Wc(x) U

c7�! W 0
c (x) = Uc(x) Wc(x) . (2.22)

In particular, this implies that the combination W †
c (x) �c(x) is gauge invariant. The collinear

Wilson line Wc(x) also allows us to construct a gauge covariant 4-vector operator Acµ(x) as [TO:
added this ref] [65]

Acµ(x) ⌘ i
2gc

⇣⇥
@

µ

Wc(x)
⇤
W †

c (x)�Wc(x)
⇥
@

µ

W †
c (x)

⇤⌘
, (2.23)

which transforms as an object in the adjoint representation:

Acµ(x) U

c7�! Uc(x)Acµ(x)U †
c (x) . (2.24)

The fact that Uc(x) consists of collinear modes implies that it would not map anticollinear
modes to anticollinear modes. Therefore, we must define anticollinear fields to be invariant under
collinear transformations:

�c̄(x) U

c7�! �c̄(x) . (2.25)

Of course, this does not imply that anticollinear fields are completely gauge invariant. Clearly,
in the anticollinear sector, we must introduce the anticollinear gluon field Gc̄µ(x) with associated
anticollinear gauge transformations:

Gc̄µ
U

c̄7�! G0
c̄µ = Uc̄Gc̄µU †

c̄ +
i
gc̄

(@
µ

Uc̄) U †
c̄ , (2.26)

where Uc̄(x) only contains anticollinear Fourier modes ⇠ (�2, 1, �)M . The anticollinear gauge
coupling gc̄ is an independent parameter from the collinear gauge coupling gc, because Gcµ and Gc̄µ

are separate fields with separate gauge transformations in the e↵ective theory. The scaling law for
the polarization components of Gc̄µ should clearly be given by

(Gc̄+, Gc̄�, Gc̄?) ⇠ (�2, 1, �)M . (2.27)

An anticollinear Wilson line Wc̄(x) is defined as

Wc̄(x) ⌘ P
s

exp

�igc̄

Z 0

�1
ds Gc̄�(z̄(s))

�
(2.28)

with
z̄+(s) = x+ , z̄�(s) = x�+ s , ~̄z?(s) = ~x? . (2.29)
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• Wilson lines are not only allowed in SCET due to 
non-locality of operators but also essential for 
constructing gauge-invariant operators. 

Gauge invariant under SU(3)c x SU(3)c ̅



SCET : Jet-veto calculations
• Scaling of the WW system momentum ~ M (1, 1, λ)   
• Scaling of x ~ 1/M (1, 1, 1/λ) 
• Keeping leading order terms in  λ (SCET power 

counting parameter) in SCET Lagrangian and allowing 
for non-locality i.e. multipole expansion 

where dependences on the proton spins are implicit. It is also understood that the fields inside

J µ⌫(x) are time-ordered and that Jµ⌫

X

is only the connected part of the matrix element. Substi-

tuting (2.45) for J µ⌫(x) together with (2.47), we get

Jµ⌫

X

(x, P1, P2, p3, p4)

=

Z
dt1 dt2C

µ⌫(t1, t2, p3+4k, p3�4, µf)
⌦
X

���i↵

c̄ (x�+ t2, ~x?) � �

↵

�c
i�

(x++ t1, ~x?)
��p(P1) p(P2)

↵
,

(2.50)

where the Wilson coe�cient Cµ⌫ is now evaluated at the scale µ = µf ⇠ pvetoT , because the actual

scale of virtuality in the process in question is O(�M) ⇠ pvetoT , as we already noted above.

Now, since �c can only create collinear states and �c̄ only anticollinear states, and also since

the remnants of the colliding protons are collinear or anticollinear, the hadronic state
��X

↵
must be

composed of only collinear and anticollinear states, i.e.,
��X

↵
=

��Xc̄Xc

↵
, (2.51)

where
��Xc

↵
consists only of collinear particles, and

��Xc̄

↵
only of anticollinear particles. For the

initial state, we let P1 be collinear and P2 anticollinear by definition and without loss of generality,

so �c and �c̄ must act on
��p(P1)

↵
and

��p(P2)
↵
, respectively. Moreover, we cannot form a gluon loop

connecting �c and �c̄, because �c can only emit collinear gluons and �c̄ only anticollinear gluons,

as they are charged under separate gauge groups as discussed in Section 2.1.5. Therefore, we have
⌦
X

���i↵

c̄ (x�+ t2, ~x?) � �

↵

�c
i�

(x++ t1, ~x?)
��p(P1) p(P2)

↵

=
⌦
Xc̄

���i↵

c̄ (x�+ t2, ~x?)
��p(P2)

↵
� �

↵

⌦
Xc

���c
i�

(x++ t1, ~x?)
��p(P1)

↵
.

(2.52)

Using the momentum operator to relocate the fields �c̄ and �c to the same point x, this becomes

= e�ip
2�t

2 e�ip
1+

t

1

⌦
Xc̄

���i↵

c̄ (x�, ~x?)
��p(P2)

↵
� �

↵

⌦
Xc

���c
i�

(x+, ~x?)
��p(P1)

↵
, (2.53)

where

p1+ ⌘ (P1 � P
X

c

)+ , p2� ⌘ (P2 � P
X

c̄

)� (2.54)

with P
X

c

and P
X

c̄

being the 4-momenta of the states
��Xc

↵
and

��Xc̄

↵
, respectively. By unpacking

� �

↵

using (2.48), the matrix element (2.53) becomes

= e�ip
2�t

2 e�ip
1+

t

1

⌦
Xc̄

���i

c̄(x
�, ~x?)uc

��p(P2)
↵ ⌦

Xc

��uc̄ �c
i

(x+, ~x?)
��p(P1)

↵
, (2.55)

where the spinor indices are now implicit and just contracted within each bra-ket. Therefore, we

obtain

Jµ⌫

X

(x, P1, P2, p3, p4)

=
⌦
Xc̄

���i

c̄(x
�, ~x?)uc

��p(P2)
↵ ⌦

Xc

��uc̄ �c
i

(x+, ~x?)
��p(P1)

↵
C̃µ⌫(p1+, p2�, p3+4k, p3�4, µf) ,

(2.56)

where

C̃µ⌫(p1+, p2�, p3+4k, p3�4, µf) ⌘
Z
dt1 dt2 e

�ip
1+

t

1 e�ip
2�t

2 Cµ⌫(t1, t2, p3+4k, p3�4, µf) . (2.57)

The matrix element (2.56) is now manifestly factorized, i.e., we can separately compute the hard

matrix element (i.e., the C̃ function), the purely collinear matrix element (the one with
��Xc

↵
), and

the purely anticollinear matrix element (the one with
��Xc̄

↵
). The only subtlety here is that the

individual matrix elements have rapidity divergences and display collinear anomalies, all of which

must cancel out. We will analyze this subtlety in Section 3.2.1
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QCD SCET
No UV poles 

IR poles : ε-2 , ε-1
Scaleless integrals ⇒ 0  

UV poles = IR poles : ε-2 , ε-1

statement clearly applies to the anticollinear quark. For later use, we define the following gauge-
invariant versions of ⇠c and ⇠c̄ [54] using the Wilson lines (2.20) and (2.28):

�c(x) ⌘W †
c (x) ⇠c(x) , �c̄(x) ⌘W †

c̄ (x) ⇠c̄(x) . (2.40)

Since Wilson lines carry no spinor indices, the constraints (2.35) and (2.39) for ⇠c and ⇠c̄ apply to
�c and �c̄ in the same manner. In particular, we have

�̄+�c = 0 , P�c = �c , C�c = +�c ,

�̄��c̄ = 0 , P̄�c̄ = �c̄ , C�c̄ = ��c̄ .
(2.41)

[TO: This paragraph was modified, according to Frank’s suggestion] Finally, let us
briefly comment on the so-called Glauber or Coulomb modes [68, 69], which were shown to be
necessary in SCET for consistency [70]. However, since the Glauber/Coulomb modes are always
o↵-shell, they should be integrated out from the e↵ective theory in accord with our principle that
guaranteed-o↵-shell modes should be integrated out, which is expected to give rise to some (nonstan-
dard) nonlocal interactions between SCET modes [70]. Calculating the e↵ects of those operators is
beyond the scope of this paper, and we simply assume that the e↵ects of Glauber/Coulomb modes
cancel out in the final results as they do in the inclusive Drell-Yan process [TO: added these
refs] [71] [72–74].

2.2.2 The E↵ective Lagrangian

The splitting of modes into collinear and anticollinear modes means that the lagrangian should also
be split. So, the entire e↵ective lagrangian is given at the leading order in � (i.e., O(�0) by

Le↵ = Lc + Lc̄ + Lhard , (2.42)

where Lc is a SCET lagrangian for the collinear sector:

Lc = � 1
2g2

c

Tr [Gcµ⌫

Gµ⌫

c ] + i
�
⇠†c �̄�Dc�⇠c + ⌅†

c �̄+Dc+⌅c + ⇠†c ~�? ·~Dc?⌅c + ⌅†
c ~�? ·~Dc?⇠c

�
. (2.43)

There are no other terms we can write at the leading order in � except that in principle the terms
in Lc,c̄ could display the nonlocalities discussed in Section 2.1.4. For example, at O(�), the most
general operator bilinear in ⇠†c and ⇠c is a nonlocal operator

R
dt f(t) ⇠†c(x

++ t, x�, x?) �̄�Dc�⇠c(x)
with a Wilson coe�cient f(t). However, a matching calculation onto QCD tells us that f(t) = �(t),
thus giving us (2.43). In fact, Lc is exact to all orders in �, because the collinear sector taken in
isolation must be identical to a QCD by Lorentz invariance. In other words, Lc can be just viewed
as a QCD lagrangian written in the lightcone coordinates to make power counting manifest so that
it can be readily used in EFT calculations.

The second term Lc̄ in (2.42) is the obvious anticollinear counterpart of Lc, which again is
identical to QCD in isolation and exact to all orders in �. The third term Lhard is the only place
where the collinear and anticollinear fields come together (to produce W+W�) and consequently
where � expansion is nontrivial. We will now describe Lhard at the leading order in �.
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SCET : Jet-veto calculations

• Match SCET to full theory (QCD) at μ ~ MWW 

• Run down the Wilson coefficient from last step down to 
μ ~ pTveto
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↵

=
⌦
Xc̄

���i↵

c̄ (x�+ t2, ~x?)
��p(P2)

↵
� �

↵

⌦
Xc

���c
i�

(x++ t1, ~x?)
��p(P1)

↵
.

(2.52)

Using the momentum operator to relocate the fields �c̄ and �c to the same point x, this becomes

= e�ip
2�t

2 e�ip
1+

t

1

⌦
Xc̄

���i↵

c̄ (x�, ~x?)
��p(P2)

↵
� �

↵

⌦
Xc

���c
i�

(x+, ~x?)
��p(P1)

↵
, (2.53)

where

p1+ ⌘ (P1 � P
X

c

)+ , p2� ⌘ (P2 � P
X

c̄

)� (2.54)

with P
X

c

and P
X

c̄

being the 4-momenta of the states
��Xc

↵
and

��Xc̄

↵
, respectively. By unpacking

� �

↵

using (2.48), the matrix element (2.53) becomes

= e�ip
2�t

2 e�ip
1+

t

1

⌦
Xc̄

���i

c̄(x
�, ~x?)uc

��p(P2)
↵ ⌦

Xc

��uc̄ �c
i

(x+, ~x?)
��p(P1)

↵
, (2.55)

where the spinor indices are now implicit and just contracted within each bra-ket. Therefore, we

obtain

Jµ⌫

X

(x, P1, P2, p3, p4)

=
⌦
Xc̄

���i

c̄(x
�, ~x?)uc

��p(P2)
↵ ⌦

Xc

��uc̄ �c
i

(x+, ~x?)
��p(P1)

↵
C̃µ⌫(p1+, p2�, p3+4k, p3�4, µf) ,

(2.56)

where

C̃µ⌫(p1+, p2�, p3+4k, p3�4, µf) ⌘
Z
dt1 dt2 e

�ip
1+

t

1 e�ip
2�t

2 Cµ⌫(t1, t2, p3+4k, p3�4, µf) . (2.57)

The matrix element (2.56) is now manifestly factorized, i.e., we can separately compute the hard

matrix element (i.e., the C̃ function), the purely collinear matrix element (the one with
��Xc

↵
), and

the purely anticollinear matrix element (the one with
��Xc̄

↵
). The only subtlety here is that the

individual matrix elements have rapidity divergences and display collinear anomalies, all of which

must cancel out. We will analyze this subtlety in Section 3.2.1
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IR poles : ε-2 , ε-1
Scaleless integrals ⇒ 0  

UV poles = IR poles : ε-2 , ε-1

statement clearly applies to the anticollinear quark. For later use, we define the following gauge-
invariant versions of ⇠c and ⇠c̄ [54] using the Wilson lines (2.20) and (2.28):

�c(x) ⌘W †
c (x) ⇠c(x) , �c̄(x) ⌘W †

c̄ (x) ⇠c̄(x) . (2.40)

Since Wilson lines carry no spinor indices, the constraints (2.35) and (2.39) for ⇠c and ⇠c̄ apply to
�c and �c̄ in the same manner. In particular, we have

�̄+�c = 0 , P�c = �c , C�c = +�c ,

�̄��c̄ = 0 , P̄�c̄ = �c̄ , C�c̄ = ��c̄ .
(2.41)

[TO: This paragraph was modified, according to Frank’s suggestion] Finally, let us
briefly comment on the so-called Glauber or Coulomb modes [68, 69], which were shown to be
necessary in SCET for consistency [70]. However, since the Glauber/Coulomb modes are always
o↵-shell, they should be integrated out from the e↵ective theory in accord with our principle that
guaranteed-o↵-shell modes should be integrated out, which is expected to give rise to some (nonstan-
dard) nonlocal interactions between SCET modes [70]. Calculating the e↵ects of those operators is
beyond the scope of this paper, and we simply assume that the e↵ects of Glauber/Coulomb modes
cancel out in the final results as they do in the inclusive Drell-Yan process [TO: added these
refs] [71] [72–74].

2.2.2 The E↵ective Lagrangian

The splitting of modes into collinear and anticollinear modes means that the lagrangian should also
be split. So, the entire e↵ective lagrangian is given at the leading order in � (i.e., O(�0) by

Le↵ = Lc + Lc̄ + Lhard , (2.42)

where Lc is a SCET lagrangian for the collinear sector:

Lc = � 1
2g2

c

Tr [Gcµ⌫

Gµ⌫

c ] + i
�
⇠†c �̄�Dc�⇠c + ⌅†

c �̄+Dc+⌅c + ⇠†c ~�? ·~Dc?⌅c + ⌅†
c ~�? ·~Dc?⇠c

�
. (2.43)

There are no other terms we can write at the leading order in � except that in principle the terms
in Lc,c̄ could display the nonlocalities discussed in Section 2.1.4. For example, at O(�), the most
general operator bilinear in ⇠†c and ⇠c is a nonlocal operator

R
dt f(t) ⇠†c(x

++ t, x�, x?) �̄�Dc�⇠c(x)
with a Wilson coe�cient f(t). However, a matching calculation onto QCD tells us that f(t) = �(t),
thus giving us (2.43). In fact, Lc is exact to all orders in �, because the collinear sector taken in
isolation must be identical to a QCD by Lorentz invariance. In other words, Lc can be just viewed
as a QCD lagrangian written in the lightcone coordinates to make power counting manifest so that
it can be readily used in EFT calculations.

The second term Lc̄ in (2.42) is the obvious anticollinear counterpart of Lc, which again is
identical to QCD in isolation and exact to all orders in �. The third term Lhard is the only place
where the collinear and anticollinear fields come together (to produce W+W�) and consequently
where � expansion is nontrivial. We will now describe Lhard at the leading order in �.
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SCET : Jet-veto calculations
• What remains is the matrix elements of SCET operators 

between initial proton states and final hadronic states, 
called Beam Functions  

• Beam Functions  are generalization of PDFs 

• Evaluate Beam Functions  as OPE on to PDFs. 
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= Beam function

(A) Beam functions

SCET : Jet-veto calculations
• What remains is the matrix elements of SCET operators 

between initial proton states and final hadronic states, 
called Beam Functions  

• One final complication : Beam functions have 
divergences which are not regulated by dimensional 
regularization!  

• The additional singularities go by the name of rapidity 
divergences



Part 2 
Rapidity Renormalization Group



Origin of rapidity divergences

with
aµk ⌘ a+nµ

+ + a�nµ

� . (2.6)

From (2.3), we see that the metric and inverse metric5 in the x+-x� subspace are given by

(g
µ⌫

) =

 
0 2

2 0

!
, (gµ⌫) =

 
0 1/2

1/2 0

!
, (2.7)

so, for arbitrary 4-vectors aµ and bµ, we have

a·b ⌘ a+b
+ + a�b� + a? ·b? = 2(a�b+ + a+b�) + a? ·b?

=
1

2
(a+b� + a�b+) + a? ·b? .

(2.8)

Now, by definition and without loss of generality, we let the 4-momentum of the initial quark

q1 be dominantly in the p+ component.6 So, we parametrically have p+ ⇠ O(M), where M is the

invariant mass of the W+W� pair. The p? component, on the other hand, is parametrically never

larger than O(pvetoT ), because the jet veto condition prevents the ? component of momentum of a

gluon radiated o↵ of q1 from being larger than pvetoT . We express this parametrics as |p?| ⇠ O(�M),

where � ⌘ pvetoT /M . The parametric size of the p� component then follows from requiring that

the quark can be on-shell, that is, p2 = p+p� + p? ·p? can be zero. (If it cannot, this quark

mode should not be in the e↵ective theory.) This determines that p� ⇠ O(�2M). Therefore, the

components of p of the initial quark must have the following parametric scaling behavior in terms

of M and �:

(p+, p�, p?) ⇠ (1,�2,�)M . (2.9)

We refer to this scaling behavior as the collinear scaling. Similarly, the p of the initial quark q2
should scale as

(p+, p�, p?) ⇠ (�2, 1,�)M , (2.10)

which we refer to as the anticollinear scaling. Note that generic collinear and anticollinear modes

have virtuality of order O(�M) ⇠ pvetoT , that is,

p2 ⇠ O(�2M2) , (2.11)

which is the square of the size of the ? component. It will be useful to remember the virtualities

of collinear and anticollinear modes are given by their pT.

Next, let us look at a gluon radiated o↵ of a collinear quark with 4-momentum p, where the

collinear quark splits into a quark with 4-momemtum q and a gluon with k. We would like to find the

condition on k such that q can remain (nearly) on-shell, because otherwise the q mode should not be

in the e↵ective theory. To find that condition, let k scale as (k+, k�, k?) ⇠ (�a,�b,�c)M . In order

for the k mode to be in the theory, we must ensure that k can be on-shell, i.e., k2 = k+k�� |~k?|2 = 0.

This can happen to nonzero k only if a + b = 2c. If c < 1, then k? is parametrically larger than

pvetoT so the gluon would be rejected by jet veto. Hence we do not have to consider gluons with

c < 1. If c > 1, then k? is parametrically smaller than pvetoT so the gluon would pass the jet veto

5 We adopt the +��� sign convention for the spacetime metric.
6 Unless otherwise noted, we always index 4-momenta by a lower index, as they are associated with a spacetime

derivative @, whose index is naturally lowered.
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Recall :  

• Collinear Modes :  

• Anti-collinear Modes :  

• Soft Modes : 
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derivative @, whose index is naturally lowered.
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and the requirement that physical observables should be free of collinear anomalies leads to RG

equations with respect to ⌫,8 in addition to standard RG equations with respect to µ associated

with DR. We will see how this works explicitly in Section 3.2.1.

Finally, since all rapidity integrals go from �1 to 1 whether we are dealing with collinear or an-

ticollinear modes, how do we actually distinguish the two modes inside loop integrals? Equivalently,

how do we avoid double-counting the modes at the loop level (the so-called zero-bin subtraction

problem [67])? Those two modes can be distinguished because they are assigned di↵erent scaling

laws. Even if we have two integrals, one for collinear and the other for anticollinear, with apparently

the same integrands and the same integration limits, the two integrands should be expanded di↵er-

ently in powers of �. (Note that everything must be expanded in EFTs for consistent and manifest

power counting.) Thus, order-by-order in �, their integrands di↵er, lead to di↵erent divergences,

and yield di↵erent results. The principle of well-defined power counting is precisely what resolves

the ambiguity/double-counting problem. (This point was particularly well elucidated in Ref. [44].)

2.1.4 Nonlocality on the Lightcone

Let �c(x) be a field that interpolates a collinear particle, that is, let �c(x) consist only of Fourier

modes scaling as ⇠ (1,�2,�)M . The components of a spacetime derivative acting on �c then scale

as

@+�c ⇠ M�c , @��c ⇠ �2M�c , @?�c ⇠ �M�c . (2.12)

Since the e↵ective theory is an expansion in terms of two small dimensionless parameters � and

↵s, with only one dimensionful scale M ,9 the scaling behavior @+�c ⇠ M�c implies that a Taylor

expansion of �c in powers of @+/M cannot be truncated at any finite order. Therefore, there are

no small parameters in the collinear sector that imply locality in the x+ coordinate [54–56]. On the

other hand, @?/M and @�/M acting on collinear fields are suppressed by � and �2, respectively, so

the lagrangian can be truncated at some finite orders in @?/M and @�/M , giving rise to locality

in the x? and x� coordinates. (In contrast, in familiar Lorentz-invariant Wilsonian EFTs, the fact

that we have @/⇤ ⌧ 1 in all directions at low energy implies an isotropically local lagrangian.)

Similarly, in the anticollinear sector, the e↵ective lagrangian is nonlocal in the x� coordinate while

local in x+ and x?. Intuitively, these nonlocalities make a perfect sense. Since the p+ component

of a collinear momentum is O(M), we can form a wave packet of length ⇠ M�1 in the x+ direction,

so we can actually resolve the intrinsic nonlocality of the e↵ective theory arising from integrating

out o↵-shell propagators at distances of O(M�1). A nonlocal EFT can be just as useful as local

EFTs as long as it possesses well-defined power-counting rules and symmetries to ensure that there

are only a finite number of operators we can write down at any given order in the power-counting

parameters. This is indeed the case for our SCET lagrangian, as we will see later.

8 By letting all ⌫ dependence be carried by collinear and anticollinear fields without including the so-called soft

gluons (the gluons with momenta scaling as ⇠ (�,�,�)M , i.e., those with a small rapidity), we have implicitly chosen

a renormalization scheme for rapidity divergences in which the only role of the soft modes is to provide renormalization

constants to absorb the 1/↵ poles of rapidity divergences. The same scheme was adopted in, e.g., a similar calculation

for the higgs production with a jet veto [41]. We therefore will not discuss soft modes in this paper.
9 Strictly speaking, we also have m

W

and m
Z

. For parametrics/scaling discussions, we treat them as ⇠ O(M).

11

• In the usual EFTs, divergences arise when EFT is run into 
UV and such divergences need to be regulated. 

• Similarly in SCET, UV divergences arise when we let the 
theory run into high virtuality regime (or highly off-shell 
regime). Such divergences are regulated by DR. 

• What happens when collinear mode runs into anti-
collinear mode? Or soft mode into collinear mode?   



Origin of rapidity divergences

• What happens when collinear mode runs into anti-
collinear mode? Or soft mode into collinear mode?  

• By the same logic as before, we expect divergences.  
• DR does not regulate such divergences because all the 

modes have the same virtuality ~ (M λ)2.  
• Need a regulator that separates these modes. 
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have virtuality of order O(�M) ⇠ pvetoT , that is,

p2 ⇠ O(�2M2) , (2.11)
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Next, let us look at a gluon radiated o↵ of a collinear quark with 4-momentum p, where the

collinear quark splits into a quark with 4-momemtum q and a gluon with k. We would like to find the

condition on k such that q can remain (nearly) on-shell, because otherwise the q mode should not be

in the e↵ective theory. To find that condition, let k scale as (k+, k�, k?) ⇠ (�a,�b,�c)M . In order

for the k mode to be in the theory, we must ensure that k can be on-shell, i.e., k2 = k+k�� |~k?|2 = 0.

This can happen to nonzero k only if a + b = 2c. If c < 1, then k? is parametrically larger than

pvetoT so the gluon would be rejected by jet veto. Hence we do not have to consider gluons with
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Recall :  

• Collinear Modes :  

• Anti-collinear Modes :  

• Soft Modes : 
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condition on k such that q can remain (nearly) on-shell, because otherwise the q mode should not be

in the e↵ective theory. To find that condition, let k scale as (k+, k�, k?) ⇠ (�a,�b,�c)M . In order

for the k mode to be in the theory, we must ensure that k can be on-shell, i.e., k2 = k+k�� |~k?|2 = 0.

This can happen to nonzero k only if a + b = 2c. If c < 1, then k? is parametrically larger than

pvetoT so the gluon would be rejected by jet veto. Hence we do not have to consider gluons with

c < 1. If c > 1, then k? is parametrically smaller than pvetoT so the gluon would pass the jet veto

5 We adopt the +��� sign convention for the spacetime metric.
6 Unless otherwise noted, we always index 4-momenta by a lower index, as they are associated with a spacetime

derivative @, whose index is naturally lowered.
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and the requirement that physical observables should be free of collinear anomalies leads to RG

equations with respect to ⌫,8 in addition to standard RG equations with respect to µ associated

with DR. We will see how this works explicitly in Section 3.2.1.

Finally, since all rapidity integrals go from �1 to 1 whether we are dealing with collinear or an-

ticollinear modes, how do we actually distinguish the two modes inside loop integrals? Equivalently,

how do we avoid double-counting the modes at the loop level (the so-called zero-bin subtraction

problem [67])? Those two modes can be distinguished because they are assigned di↵erent scaling

laws. Even if we have two integrals, one for collinear and the other for anticollinear, with apparently

the same integrands and the same integration limits, the two integrands should be expanded di↵er-

ently in powers of �. (Note that everything must be expanded in EFTs for consistent and manifest

power counting.) Thus, order-by-order in �, their integrands di↵er, lead to di↵erent divergences,

and yield di↵erent results. The principle of well-defined power counting is precisely what resolves

the ambiguity/double-counting problem. (This point was particularly well elucidated in Ref. [44].)

2.1.4 Nonlocality on the Lightcone

Let �c(x) be a field that interpolates a collinear particle, that is, let �c(x) consist only of Fourier

modes scaling as ⇠ (1,�2,�)M . The components of a spacetime derivative acting on �c then scale

as

@+�c ⇠ M�c , @��c ⇠ �2M�c , @?�c ⇠ �M�c . (2.12)

Since the e↵ective theory is an expansion in terms of two small dimensionless parameters � and

↵s, with only one dimensionful scale M ,9 the scaling behavior @+�c ⇠ M�c implies that a Taylor

expansion of �c in powers of @+/M cannot be truncated at any finite order. Therefore, there are

no small parameters in the collinear sector that imply locality in the x+ coordinate [54–56]. On the

other hand, @?/M and @�/M acting on collinear fields are suppressed by � and �2, respectively, so

the lagrangian can be truncated at some finite orders in @?/M and @�/M , giving rise to locality

in the x? and x� coordinates. (In contrast, in familiar Lorentz-invariant Wilsonian EFTs, the fact

that we have @/⇤ ⌧ 1 in all directions at low energy implies an isotropically local lagrangian.)

Similarly, in the anticollinear sector, the e↵ective lagrangian is nonlocal in the x� coordinate while

local in x+ and x?. Intuitively, these nonlocalities make a perfect sense. Since the p+ component

of a collinear momentum is O(M), we can form a wave packet of length ⇠ M�1 in the x+ direction,

so we can actually resolve the intrinsic nonlocality of the e↵ective theory arising from integrating

out o↵-shell propagators at distances of O(M�1). A nonlocal EFT can be just as useful as local

EFTs as long as it possesses well-defined power-counting rules and symmetries to ensure that there

are only a finite number of operators we can write down at any given order in the power-counting

parameters. This is indeed the case for our SCET lagrangian, as we will see later.

8 By letting all ⌫ dependence be carried by collinear and anticollinear fields without including the so-called soft

gluons (the gluons with momenta scaling as ⇠ (�,�,�)M , i.e., those with a small rapidity), we have implicitly chosen

a renormalization scheme for rapidity divergences in which the only role of the soft modes is to provide renormalization

constants to absorb the 1/↵ poles of rapidity divergences. The same scheme was adopted in, e.g., a similar calculation

for the higgs production with a jet veto [41]. We therefore will not discuss soft modes in this paper.
9 Strictly speaking, we also have m

W

and m
Z

. For parametrics/scaling discussions, we treat them as ⇠ O(M).
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Origin of rapidity divergences

• Need a regulator that separates these modes.  
• Rapidity of these modes are vastly different : logλ, -logλ, 1 
• Need rapidity regulator to separate modes. 

Corresponding to rapidity regulator exists a rapidity 
renormalization group (RRG) equations, just as there 
exists RG equations corresponding to dim reg regulator μ. 

with
aµk ⌘ a+nµ

+ + a�nµ

� . (2.6)

From (2.3), we see that the metric and inverse metric5 in the x+-x� subspace are given by

(g
µ⌫

) =

 
0 2

2 0

!
, (gµ⌫) =

 
0 1/2

1/2 0

!
, (2.7)

so, for arbitrary 4-vectors aµ and bµ, we have

a·b ⌘ a+b
+ + a�b� + a? ·b? = 2(a�b+ + a+b�) + a? ·b?

=
1

2
(a+b� + a�b+) + a? ·b? .

(2.8)

Now, by definition and without loss of generality, we let the 4-momentum of the initial quark

q1 be dominantly in the p+ component.6 So, we parametrically have p+ ⇠ O(M), where M is the

invariant mass of the W+W� pair. The p? component, on the other hand, is parametrically never

larger than O(pvetoT ), because the jet veto condition prevents the ? component of momentum of a

gluon radiated o↵ of q1 from being larger than pvetoT . We express this parametrics as |p?| ⇠ O(�M),

where � ⌘ pvetoT /M . The parametric size of the p� component then follows from requiring that

the quark can be on-shell, that is, p2 = p+p� + p? ·p? can be zero. (If it cannot, this quark

mode should not be in the e↵ective theory.) This determines that p� ⇠ O(�2M). Therefore, the

components of p of the initial quark must have the following parametric scaling behavior in terms

of M and �:

(p+, p�, p?) ⇠ (1,�2,�)M . (2.9)

We refer to this scaling behavior as the collinear scaling. Similarly, the p of the initial quark q2
should scale as

(p+, p�, p?) ⇠ (�2, 1,�)M , (2.10)

which we refer to as the anticollinear scaling. Note that generic collinear and anticollinear modes

have virtuality of order O(�M) ⇠ pvetoT , that is,

p2 ⇠ O(�2M2) , (2.11)

which is the square of the size of the ? component. It will be useful to remember the virtualities

of collinear and anticollinear modes are given by their pT.

Next, let us look at a gluon radiated o↵ of a collinear quark with 4-momentum p, where the

collinear quark splits into a quark with 4-momemtum q and a gluon with k. We would like to find the

condition on k such that q can remain (nearly) on-shell, because otherwise the q mode should not be

in the e↵ective theory. To find that condition, let k scale as (k+, k�, k?) ⇠ (�a,�b,�c)M . In order

for the k mode to be in the theory, we must ensure that k can be on-shell, i.e., k2 = k+k�� |~k?|2 = 0.

This can happen to nonzero k only if a + b = 2c. If c < 1, then k? is parametrically larger than

pvetoT so the gluon would be rejected by jet veto. Hence we do not have to consider gluons with

c < 1. If c > 1, then k? is parametrically smaller than pvetoT so the gluon would pass the jet veto

5 We adopt the +��� sign convention for the spacetime metric.
6 Unless otherwise noted, we always index 4-momenta by a lower index, as they are associated with a spacetime

derivative @, whose index is naturally lowered.
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of M and �:
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which is the square of the size of the ? component. It will be useful to remember the virtualities
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Next, let us look at a gluon radiated o↵ of a collinear quark with 4-momentum p, where the

collinear quark splits into a quark with 4-momemtum q and a gluon with k. We would like to find the

condition on k such that q can remain (nearly) on-shell, because otherwise the q mode should not be

in the e↵ective theory. To find that condition, let k scale as (k+, k�, k?) ⇠ (�a,�b,�c)M . In order

for the k mode to be in the theory, we must ensure that k can be on-shell, i.e., k2 = k+k�� |~k?|2 = 0.

This can happen to nonzero k only if a + b = 2c. If c < 1, then k? is parametrically larger than

pvetoT so the gluon would be rejected by jet veto. Hence we do not have to consider gluons with

c < 1. If c > 1, then k? is parametrically smaller than pvetoT so the gluon would pass the jet veto
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6 Unless otherwise noted, we always index 4-momenta by a lower index, as they are associated with a spacetime

derivative @, whose index is naturally lowered.

9

Recall :  

• Collinear Modes :  

• Anti-collinear Modes :  

• Soft Modes : 

with
aµk ⌘ a+nµ

+ + a�nµ

� . (2.6)

From (2.3), we see that the metric and inverse metric5 in the x+-x� subspace are given by
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) =
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=
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(2.8)

Now, by definition and without loss of generality, we let the 4-momentum of the initial quark

q1 be dominantly in the p+ component.6 So, we parametrically have p+ ⇠ O(M), where M is the

invariant mass of the W+W� pair. The p? component, on the other hand, is parametrically never

larger than O(pvetoT ), because the jet veto condition prevents the ? component of momentum of a

gluon radiated o↵ of q1 from being larger than pvetoT . We express this parametrics as |p?| ⇠ O(�M),

where � ⌘ pvetoT /M . The parametric size of the p� component then follows from requiring that
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mode should not be in the e↵ective theory.) This determines that p� ⇠ O(�2M). Therefore, the

components of p of the initial quark must have the following parametric scaling behavior in terms

of M and �:

(p+, p�, p?) ⇠ (1,�2,�)M . (2.9)

We refer to this scaling behavior as the collinear scaling. Similarly, the p of the initial quark q2
should scale as

(p+, p�, p?) ⇠ (�2, 1,�)M , (2.10)

which we refer to as the anticollinear scaling. Note that generic collinear and anticollinear modes

have virtuality of order O(�M) ⇠ pvetoT , that is,

p2 ⇠ O(�2M2) , (2.11)

which is the square of the size of the ? component. It will be useful to remember the virtualities

of collinear and anticollinear modes are given by their pT.

Next, let us look at a gluon radiated o↵ of a collinear quark with 4-momentum p, where the

collinear quark splits into a quark with 4-momemtum q and a gluon with k. We would like to find the

condition on k such that q can remain (nearly) on-shell, because otherwise the q mode should not be

in the e↵ective theory. To find that condition, let k scale as (k+, k�, k?) ⇠ (�a,�b,�c)M . In order

for the k mode to be in the theory, we must ensure that k can be on-shell, i.e., k2 = k+k�� |~k?|2 = 0.

This can happen to nonzero k only if a + b = 2c. If c < 1, then k? is parametrically larger than

pvetoT so the gluon would be rejected by jet veto. Hence we do not have to consider gluons with

c < 1. If c > 1, then k? is parametrically smaller than pvetoT so the gluon would pass the jet veto

5 We adopt the +��� sign convention for the spacetime metric.
6 Unless otherwise noted, we always index 4-momenta by a lower index, as they are associated with a spacetime

derivative @, whose index is naturally lowered.
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and the requirement that physical observables should be free of collinear anomalies leads to RG

equations with respect to ⌫,8 in addition to standard RG equations with respect to µ associated

with DR. We will see how this works explicitly in Section 3.2.1.

Finally, since all rapidity integrals go from �1 to 1 whether we are dealing with collinear or an-

ticollinear modes, how do we actually distinguish the two modes inside loop integrals? Equivalently,

how do we avoid double-counting the modes at the loop level (the so-called zero-bin subtraction

problem [67])? Those two modes can be distinguished because they are assigned di↵erent scaling

laws. Even if we have two integrals, one for collinear and the other for anticollinear, with apparently

the same integrands and the same integration limits, the two integrands should be expanded di↵er-

ently in powers of �. (Note that everything must be expanded in EFTs for consistent and manifest

power counting.) Thus, order-by-order in �, their integrands di↵er, lead to di↵erent divergences,

and yield di↵erent results. The principle of well-defined power counting is precisely what resolves

the ambiguity/double-counting problem. (This point was particularly well elucidated in Ref. [44].)

2.1.4 Nonlocality on the Lightcone

Let �c(x) be a field that interpolates a collinear particle, that is, let �c(x) consist only of Fourier

modes scaling as ⇠ (1,�2,�)M . The components of a spacetime derivative acting on �c then scale

as

@+�c ⇠ M�c , @��c ⇠ �2M�c , @?�c ⇠ �M�c . (2.12)

Since the e↵ective theory is an expansion in terms of two small dimensionless parameters � and

↵s, with only one dimensionful scale M ,9 the scaling behavior @+�c ⇠ M�c implies that a Taylor

expansion of �c in powers of @+/M cannot be truncated at any finite order. Therefore, there are

no small parameters in the collinear sector that imply locality in the x+ coordinate [54–56]. On the

other hand, @?/M and @�/M acting on collinear fields are suppressed by � and �2, respectively, so

the lagrangian can be truncated at some finite orders in @?/M and @�/M , giving rise to locality

in the x? and x� coordinates. (In contrast, in familiar Lorentz-invariant Wilsonian EFTs, the fact

that we have @/⇤ ⌧ 1 in all directions at low energy implies an isotropically local lagrangian.)

Similarly, in the anticollinear sector, the e↵ective lagrangian is nonlocal in the x� coordinate while

local in x+ and x?. Intuitively, these nonlocalities make a perfect sense. Since the p+ component

of a collinear momentum is O(M), we can form a wave packet of length ⇠ M�1 in the x+ direction,

so we can actually resolve the intrinsic nonlocality of the e↵ective theory arising from integrating

out o↵-shell propagators at distances of O(M�1). A nonlocal EFT can be just as useful as local

EFTs as long as it possesses well-defined power-counting rules and symmetries to ensure that there

are only a finite number of operators we can write down at any given order in the power-counting

parameters. This is indeed the case for our SCET lagrangian, as we will see later.

8 By letting all ⌫ dependence be carried by collinear and anticollinear fields without including the so-called soft

gluons (the gluons with momenta scaling as ⇠ (�,�,�)M , i.e., those with a small rapidity), we have implicitly chosen

a renormalization scheme for rapidity divergences in which the only role of the soft modes is to provide renormalization

constants to absorb the 1/↵ poles of rapidity divergences. The same scheme was adopted in, e.g., a similar calculation

for the higgs production with a jet veto [41]. We therefore will not discuss soft modes in this paper.
9 Strictly speaking, we also have m

W

and m
Z

. For parametrics/scaling discussions, we treat them as ⇠ O(M).
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!

• The light-cone divergences in the beam function are now regulated 
at the expense of introducing regulator scales      and      , which 
play role analogous to μ in  DR. Correspondingly, the role of ε is 
played by      and         .  

Rapidity Regulator
• Vast literature in SCET on rapidity regulators. We choose to work 

with analytic rapidity regulator, similar to one used by Becher et al. 
for Drell-Yan pT resummation [arXiv:1007.4005] . *Analytic rapidity 
regulators in SCET have been used before as well. 

• However, formulation of RRG with analytic regulator had been 
missing. We address this issue [arXiv:1506.xxxx : PJ and Takemichi Okui]. 

• We introduce the following analytic regulator  

Splits the phase space integrals into regions of different rapidities



Rapidity RG (RRG)
• With the regulators in place, factorized cross-section takes the 

form :

• The hard function H(μ) is the squared Wilson coefficient RG 
evolved from μ~MWW to μ~pTveto. 

• B(μ, ν) is the regulated beam function.  
• To cancel divergences from the beam functions, a 

renormalization constant ZS has to introduced. Alternatively, 
ZS can be interpreted as soft function which is matrix element 
consisting of states with soft modes.  

• Requiring cross-section to be independent of the scale ν 
gives RRG.   

• We benefit from the condition that RG evolution is 
independent of the path in (μ, ν) parameter space. 



Rapidity RG (RRG)
• With the regulators in place, factorized cross-section takes the 

form :

• Just as the initial condition for RG of the Wilson coefficient is 
chosen to be μ~MWW to minimize logs, similarly, initial 
conditions for rapidity scales are chosen to minimize logs.   

• Just as truncation in perturbation series leads to scale 
uncertainty associated with μ, there are scale uncertainties 
associated with rapidity scales.  

• While the source of μ scale uncertainty can be traced to 
strong coupling running, the source of ν scale uncertainty 
are logs of the form log(μ/ν) i.e. μ uncertainty feeds into ν 
uncertainty. 



Rapidity RG (RRG)

• Our all-order factorization formula is identical to Becher et al, 
there is no dependence on rapidity scales. So, naively there 
is no rapidity scale to vary that may lead to scale uncertainty.  

• However, at a given order in resummed perturbation theory, 
dependence on rapidity scale reappears which is a source 
of additional scale uncertainties.  

arXiv:1506.xxxx : PJ and Takemichi Okui 

Scale uncertainties from RRG



Part 3 
Applications to WW + 0 jets



Counting 
• We work at leading order in SCET                                                              

i.e. consider terms that are singular in λ = pTveto/MWW  
• Higher order corrections are suppressed by powers of λ,              

they are called power corrections.  
• Counting large logs as 1/αs , 

• NLL    : Keep terms up to O(1)                
• NNLL : Keep terms up to O(αs)     



Results 

• μf ≈ pT
veto 

• Scale uncertainty : Vary 
μf and μh by factors of 
1/2 and 2. 

• anti-kT jets (R=0.4)  

With π2 Without π2

π2 Resummation :!
!
 log[ -M2/μh2 ] give 
factors of π2  when 
squared if  μh2 > 0. !
!
Better choice : μh2 ≈ -M2



Results 
• Comparison with fixed order

NNLL+NLO means power corrections included 
(which are < 1%) 

R=0.5R=0.4

R dependence 
through log(R) 
terms at NNLO



Results 
• Comparison with MC+Parton shower

Without π2 Resummation

Madgraph 
+Pythia

MC@NLO 
+Herwig

Powheg 
+Pythia



Results 

With π2 Resummation 

p
s = 7 TeV

R = 0.4 R = 0.5

pvetoT = 25 GeV pvetoT = 30 GeV

ATLAS

�veto
WW

[pb]
37.9+3.8%+5.0%+3.8%

�3.8%�5.0%�3.8% �
CMS

�veto
WW

[pb]
� 41.5+3.8%+7.2%+2.3%

�3.8%�7.2%�2.3%

Theory

�veto
WW

[pb]
37.4+3.8%

�3.0% 39.0+2.4%
�2.3%

Theory

�veto
h!WW

[pb]
2.1+13.5%

�11.4% 2.3+11.5%
�10.6%

30

35

40

45

�
ve

to
W

W
[p

b]

p
s = 7 TeV

pveto
T = 25 GeV

R = 0.4
pveto

T = 30 GeV
R = 0.5

Theory
(WW only) ATLAS CMS

p
s = 8 TeV

R = 0.4 R = 0.5

pvetoT = 25 GeV pvetoT = 30 GeV

ATLAS

�veto
WW

[pb]
48.1+1.7%+6.2%+3.1%

�1.7%�5.2%�2.9% �
CMS

�veto
WW

[pb]
� 54.2+4.0%+6.5%+4.4%

�4.0%�6.5%�4.4%

Theory

�veto
WW

[pb]
44.7+3.5%

�2.8% 46.6+2.2%
�2.1%

Theory

�veto
h!WW

[pb]
2.6+13.3%

�11.7% 2.9+11.5%
�11.5%

Table 2: Comparison of our theory predictions for jet-veto cross-section with those measured by the

ATLAS and CMS experiments at
p
s = 7- and 8-TeV LHC runs. The Higgs jet-veto cross-sections

are taken from [43]. As in the rest of the paper, the scale uncertainties in the theory predictions

here correspond to the standard convention of varying µh and µf by a factor of 2 above and below

M and pvetoT , respectively. It should be noted that they may be somewhat smaller than the theory

uncertainties estimated from comparing the NLL to NNLL calculations in Fig. 2a and Fig. 2b.
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M and pvetoT , respectively. It should be noted that they may be somewhat smaller than the theory

uncertainties estimated from comparing the NLL to NNLL calculations in Fig. 2a and Fig. 2b.
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To π2 or not to π2  
• Logarithms in the Wilson coefficient of the form 

• Matching SCET to QCD should be performed at a scale μh so as to 
minimize logs.  

• Naive choice of μh = MWW  leads to factors of i π which on squaring can 
give large contributions of ~ π2. 

•  On the other hand, μh2 = -(MWW)2 gives no π2 terms.  
• In general, μh is complex while the RG equation runs down to factorization 

scale which is real. 
• The complex phase of  μh2  is associated with large perturbative 

corrections which can be resummed in SCET. The RGE for the Wilson 
coefficient, be it real or complex, is already known.  



To π2 or not to π2  
• Logarithms in the Wilson coefficient of the form 

• Arg[μh2] =  θ, we want to resum 
θ2  terms.    

• If logs are the only source of π2 

terms, obvious choice is |θ| = π  
• If not, need to vary θ in analogy 

with varying scales by factors 
of 1/2 and 2. 

4

problem: the hard scale, µh and the factorization scale,
µf.4 Given that µh is complex-valued, the RG evolu-
tion of the hard coe�cients can be realized as a two
step process, C(µh) ! C(|µh|) ! C(µf). In this pa-
per, we will consider inclusive cross-sections so that it
is reasonable to set µf = |µh| ⌘ µ. For less inclusive
measurements, such as imposing jet-veto [50], we have
µf 6= |µh| so that the evolution C(|µh|) ! C(µf) must
also be considered. Nevertheless, the first RG running,
C(µh) ! C(|µh|) essentially decouples from the second
RG running, C(|µh|) ! C(µf), so that our analysis can
be trivially extended to less-inclusive measurements.

Let us define µ ⌘ µf = |µh| and µ

2
h = µ2

e

i⇥, where ⇥ 2
(�⇡,⇡) is the complex phase angle. In the last section,
we showed that the logarithms L

M

(µh) present in the
hard matching coe�cient are minimized for µ = M and
⇥ = �⇡ + 0+. While the e↵ective field theory dictates
the choice of the hard matching scale to be the scale of
the hard interaction, there is nonetheless an ambiguity
associated with the choice of the hard scale parameters,
µ and ⇥, since the contribution of non-logarithmic terms
in Eq. (4) maybe sizable. On the other hand, total cross-
section, being a physical observable, is independent of the
choice of matching scale. Therefore, this ambiguity in the
choice of matching scale parameters should be reflected
as scale uncertainty in the theory prediction.

Variation of the hard scale in the complex µ

2-plane is
shown in Fig. 2, where the shaded annulus corresponds to
the region M/2 < µ < 2M and �⇡ < ⇥ < ⇡. If the non-
logarithmic terms in Eq. (4) were completely dominant
over the logarithmic ones, there would be no preferred
value of ⇥. On the other extreme, if logarithmic terms
were completely dominant, ⇥ = �⇡ + 0+ would be the
ideal choice. Numerically, for the diboson processes, we
find that ⇡

2 terms arising from the logarithms account
for nearly a half of the total NLO corrections, so that the
situation is somewhere in between. With these consid-
erations in mind, to estimate the scale uncertainties for
diboson processes, we select the region �⇡ < ⇥ < 0 as
indicated by the green hatched region in Fig. 2. This is
to be contrasted with the fixed-order calculations which
have ⇥ = 0 on one hand, and ⇡

2-resummation calcula-
tions which select ⇥ = �⇡ + 0+ on the other hand.

For the process qq̄

0 ! V V

0, the scale dependence of
the hard coe�cients in Eq. (3) follows from that of the
Wilson coe�cients, which in turn satisfy the following
RG equation :

µ

dC̃µ⌫(µ)

dµ
=

✓
�cusp
F L

M

(µ) + 2�F

◆
C̃

µ⌫(µ) (5)

4 More generally, one can consider a soft scale µs ⇠ ⇤QCD but we
assume that the evolution from µ = µs to µ = µf is accounted
by the PDF running. This is true when the ‘threshold correc-
tions’ from soft-emissions are small, which has been shown for
the diboson processes [51, 52].

Im(μ2)

Re(μ2)0

FIG. 2: Variation of the hard scale µh is shown in the complex
µ2-plane with a branch cut along the negative real axis. The
orange shaded region satisfies M/2 < |µh| < 2M but only the
hatched region of the annulus is considered for scale variation.

where �cusp
F is the cusp-anomalous dimension which re-

sums double logarithms while �F is the anomalous dimen-
sion which resums single logarithms. Both �cusp

F and �F

implicitly depend on µ through ↵

s

. The anomalous di-
mensions appearing in the RG equation above are univer-
sal for class of processes which have colorless final states
(not counting emissions from initial state quarks), and
therefore identical for all diboson production processes
and Drell-Yan.
A subtlety that emerges from the RG running between

the scales µh and µf is that the strong coupling ↵

s

(µ)
must now be defined in the complex µ

2-plane with a
branch cut along the negative real axis. As long as
the contours of integration are su�ciently away from
the Landau pole in the complex µ

2-plane, ↵
s

(µ) is well-
defined along such contours. Using the definition of QCD
beta function �(↵

s

) and performing contour integration,
a particularly useful result can be obtained [59] :

Z
↵s(µh)

↵s(µ)

d↵
s

�(↵
s

)
=

i⇥

2
(6)

For the purpose of power counting in ↵

s

, we shall treat
|⇥| ⇠ O(↵�1

s

) although numerically ⇥ can also be zero.
Eq. (6) allows us to compute the complex couplings
↵

s

(µh) in terms of the real couplings ↵

s

(µ), where the
latter can be computed in a standard way. At NLO, we
have the following relation :

↵

s

(µ)

↵

s

(µh)
= 1 + ia(µ)

⇥

⇡

+
↵

s

(µ)

4⇡

�1

�0
log


1 + ia(µ)

⇥

⇡

�
+O(↵2

s

)

(7)

where a(µ) = �0↵s

(µ)/4 and �0 = 11/3C
A

� 4/3T
F

n

f

with C

A

= 4, T

F

= 1/2 and n

f

is the active number
of flavors which we take to be five. Numerically, since



To π2 or not to π2  
Before

After

arXiv:1411.0677 : PJ 



Impact of RRG

Before RRG After RRG

Jet-parameter R=1

• Scale uncertainty before RRG ~ 1% (can’t be right) 
• Scale uncertainty after RRG ~ 5% 



Impact of RRG
Jet-parameter R=0.4

• Scale uncertainty after RRG more than 10% !! 
• Reason for large NNLL uncertainty is large log(R) terms  which arise 

at NNLO and resummation of which is currently an open problem. 

Before RRG After RRG

Used by LHC 
experiments

arXiv:1506.xxxx : PJ 
and Takemichi Okui 



Future directions 

• Understand correlations between pT resummation and jet-veto 
resummation [work in progress with P. Meade and H. Ramani] 

• Calculation of fully differential beam function, which would allow 
us to get pT distributions in the 0-jet bin [work in progress with T. 
Okui] 

• How to resum log(R) terms. 


